Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. j. microbiol ; 46(3): 691-700, July-Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-755810

ABSTRACT

Keratinolytic microorganisms have become the subject of scientific interest due to their ability to biosynthesize specific keratinases and their prospective application in keratinic waste management. Among several bacterial classes, actinobacteria remain one of the most important sources of keratin-degrading strains, however members of the Micrococcaceae family are rarely scrutinized in regard to their applicatory keratinolytic potential. The tested Micrococcus sp. B1pz isolate from poultry feather waste was identified as M. luteus. The strain, grown in the medium with 1–2% chicken feathers and a yeast extract supplement, produced keratinases of 32 KU and lower level of proteases, 6 PU. It was capable to effectively decompose feathers or “soft” keratin of stratum corneum, in contrast to other “hard” hair-type keratins. The produced keratinolytic enzymes were mainly a combination of alkaline serine or thiol proteases, active at the optimum pH 9.4, 55 °C. Four main protease fractions of 62, 185, 139 and 229 kDa were identified in the crude culture fluid. The research on the auxiliary role of reducing factors revealed that reducing sulfur compounds could be applied in keratinolysis enhancement during enzymatic digestion of keratin, rather than in culture conditions. The presented M. luteus isolate exhibits a significant keratinolytic potential, which determines its feasible applicatory capacity towards biodegradation of poultry by-products or formulation of keratin-based feed components.

.


Subject(s)
Animals , Keratins/metabolism , Micrococcus luteus/enzymology , Micrococcus luteus/metabolism , Peptide Hydrolases/metabolism , Biodegradation, Environmental , Chickens/microbiology , Feathers/microbiology , Micrococcus luteus/isolation & purification , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Poultry/microbiology , Sulfur Compounds/metabolism , Waste Management
2.
Braz. j. microbiol ; 43(4): 1340-1346, Oct.-Dec. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-665818

ABSTRACT

A total of 112 soil samples were taken from differents areas of district D.I.Khan and Kohat (KPK) Pakistan and screened for production of antibiotics against the Micrococcus luteus and Staphylococcus aureus. Widest zone of inhibition (18mm) was produced by microorganism isolated from saline soil. The strain was later identified as Bacillus GU057 by standard biochemical assays. Maximum activity (18mm inhibition zone) was observed against Staphylococcus aureus after 48 hours of incubation at pH 8 and 4% concentration of glucose. The antibiotic was identified by autobiography as bacitracin. The Bacillus strain GU057 was confirmed as good peptide antibiotic producer and can effectively be indulged as biocontrol agent.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Bacillus/isolation & purification , Bacitracin/analysis , Bacitracin/isolation & purification , Glucose/analysis , Micrococcus luteus/isolation & purification , Saltpetre Soils/analysis , Staphylococcus aureus/isolation & purification , Methods , Process Optimization , Reference Standards , Soil Microbiology , Methods
3.
Article in English | LILACS | ID: lil-604989

ABSTRACT

The antimicrobial activity of five sanitizing agents employed in clean areas designated for the pharmaceutical manufacturing of sterile products was tested against nine microorganisms, including four microorganisms from the clean area microbiota. The method consisted of challenging 5 mL of each sanitizing agent - 70% isopropyl alcohol, 0.4% LPH®, 1.16% hydrogen peroxide, 4% hydrogen peroxide, 1% Bioper® and 5% phenol - with 0.1mL each of concentrated suspensions (105 ? 106 CFU/mL) of Staphylococcus aureus, Candida albicans, Corynebacterium sp., Micrococcus luteus, Escherichia coli, Aspergillus niger, Bacillus subtilis, Staphylococcus sp. and Bacillus sp. for 10 minutes, followed by serial dilutions and plating. The results demonstrated that the five agents were effective against S. aureus, C. albicans, Corynebacterium sp., and M. luteus. The same was true of E. coli, except that isopropyl alcohol showed low levels of inactivation. With A. niger, isopropyl alcohol, 0.4% LPH® and hydrogen peroxide were more effective and 5% phenol and 1% Bioper® less effective. 1% Bioper® and 4% hydrogen peroxide showed greater inactivation of Staphylococcus sp., Bacillus sp. and B. subtilis than the other agents. Against S. aureus, C. albicans, Corynebacterium sp. and M. luteus, 5% phenol showed similar activity to other agents, while with A. niger, B. subtilis, Staphylococcus sp. and Bacillus sp., it was similar to or less active than the other agents. It was demonstrated that two microorganisms from the clean area microbiota, Staphylococcus sp. and Bacillus sp., were the most difficult to eradicate, requiring more frequent application of hydrogen peroxide and 1% Bioper® than the other strains.


O objetivo deste estudo é avaliar a atividade antimicrobiana de cinco agentes sanitizantes empregados em áreas limpas construídas para a fabricação de produtos farmacêuticos estéreis contra nove microrganismos, incluindo quatro microrganismos oriundos da área limpa. A metodologia constituiu em desafiar 5 mL de cada agente sanitizante, álcool isopropílico 70%, LPH® 0,400%, peróxido de hidrogênio 1,160% e 4%, Bioper® 1% e fenol 5% com 0,1 mL de suspensão concentrada (105 ? 106 UFC/mL) de Staphylococcus aureus, Candida albicans, Corynebacterium sp., Micrococcus luteus, Escherichia coli, Aspergillus niger, Bacillus subtilis, Staphylococcus sp. e Bacillus sp. individualmente por 10 minutos, seguido de diluições seriadas e plaqueamento. Os resultados demonstraram que os cinco agentes sanitizantes foram efetivos contra S. aureus, C. albicans, Corynebacterium sp., e M. luteus. Os mesmos resultados foram observados com E. coli, exceto para o álcool isopropílico, que demonstrou baixos níveis de inativação. Contra A. niger, álcool isopropílico, 0.4% LPH® e peróxido de hidrogênio foram mais efetivos e fenol e Bioper® menos efetivos. Bioper® e peróxido de hidrogênio 4% demonstraram altos níveis de inativação de Staphylococcus sp., Bacillus sp. e B. subtilis quando comparados com outros agentes. Fenol demonstrou atividade antimicrobiana similar aos outros agentes contra S. aureus, C. albicans, Corynebacterium sp. e M. luteus. Contra A. niger, B. subtilis, Staphylococcus sp. e Bacillus sp., a atividade antimicrobiana do fenol foi similar ou inferior a dos outros agentes. Foi demonstrado que os microrganismos isolados da área limpa, Staphylococcus sp. e Bacillus sp., foram os que apresentaram maior dificuldade para inativar, sendo necessária a aplicação de peróxido de hidrogênio e Bioper® , com maior frequência.


Subject(s)
Phenol/toxicity , Hydrogen Peroxide/toxicity , /toxicity , Aspergillus niger/isolation & purification , Bacillus subtilis/isolation & purification , Candida albicans/isolation & purification , Corynebacterium/isolation & purification , Escherichia coli/isolation & purification , Micrococcus luteus/isolation & purification , Staphylococcus aureus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL